
Download free eBooks at bookboon.com

Java: Classes in Java Applications

19

Flow Control

2. Flow Control

2.1 Introduction to Flow Control

The Java language provides a number of constructs that enable the developer to control the sequence of
execution of Java statements. Chapter Two provides examples of how these constructs are used to control
the flow of execution through a block of code that is typically contained in the body of a method.

2.2 Sequential Flow

Sequential flow of execution of statements is the execution of Java source code in a statement-by-
statement sequence in the order in which they are written, with no conditions. Most of the examples of
methods that are discussed in previous chapters exhibit sequential flow. In general terms, such a method is
written as follows.

public void someMethod() {

 // first statement to execute
 // second statement to execute
 // third statement to execute
 // and so on, to the final statement
 // final statement to execute

} // end of method definition

A number of the main methods, presented in previous chapters, are structured in this sequential way in
order to satisfy straightforward testing criteria.

2.3 Conditional Flow

While sequential flow is useful, it is likely to be highly restrictive in terms of its logic. Executing
statements conditionally gives the developer a mechanism to control the flow of execution in order to
repeat the execution of one or more statements or change the normal, sequential flow of control.
Constructs for conditional flow control in Java are very similar to those provided by other programming
languages. Table 2.1 on the next page identifies the flow control constructs provided by the Java language.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

20

Flow Control

Statement Type Key words

Decision if … then

Decision if … else

Decision switch … case

Loop for

Loop while

Loop do … while

Branching break: labelled and unlabelled form

Branching continue: labelled and unlabelled form

Exception handling (see Chapter Four) try … catch

Table 2.1 Flow control constructs

The sub-sections that follow show, by example, how these constructs are used.

2.4 Making Decisions

Using a decision-making construct allows the developer to execute a block of code only if a condition is
true. The sub-sections that follow illustrate how decision-making constructs are used.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Java: Classes in Java Applications

21

Flow Control

2.4.1 The if … then Construct

The if … then construct is the most basic of the decision-making constructs provided by the Java language.
If a condition is true, the block of code is executed: otherwise, control skips to the first statement after the
if block. The following code snippet illustrates a simple use of the if … then construct.

 // assume that the value of age has been entered via the keyboard
if (age >= 18) // the if condition is placed between (and)

{ // start of if block

System.out.println(“You can drink legally.”); // the then clause

} // end of if block

 // execute the next statement
System.out.println(“The rest of the programme is next.”);

When the code snippet is run (in a main method), the output when age = 20 is:

 You can drink legally.
 The rest of the programme is next.

and when age = 17, the output is:

 The rest of the programme is next.

In some programming languages, the word ‘then’ is included in the then clause. As the code snippet
above shows, this is not the case in Java.

An example taken from the themed application shows an if … then construct in action in one of the
methods of the Member class. The method adds a member to the array of members only if there is room in
the array of (arbitrary) size 6.

 /**
 * This method adds a member if there is room in the array of members called members.
 * @param fName The member's first name.
 * @param lName The member's last name.
 * @param uName The member's user name.
 * @param pWord The member's password.
 */
 public void addMember(String fName, String lName, String uName, String pWord) {

if(noOfMembers < 6)
 {
 members[noOfMembers] = new Member(fName,

lName, uName, pWord);

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

22

Flow Control

 System.out.println("The member has been added.");
 // Increment the number of members.
 noOfMembers++;
 }
 System.out.println("No room for another member.");

 } // End of addMember.

If there is no room in the array because noOfMembers is equal to or greater than 6, control skips to the
print statement that outputs the message “No room for another member.”

2.4.2 The if … else Construct

The if … else construct (sometimes known as the if … then … else construct) provides an alternative path
of execution if the if condition evaluates to false. Figure 2.1 illustrates, diagrammatically, the logic of the
if … else construct.

Figure 2.1 The logic of the if … else construct

Flow of control enters the if clause and the if condition is tested. The result of evaluating the if condition
returns either true or false and one or other of the paths of execution are followed depending on this value.
The else block is executed if the if condition is false.

The next code snippet illustrates a simple use of the if … else construct by modifying the first code snippet
in Section 2.4.1.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

23

Flow Control

if (age >= 18) // the if condition
{ // start of if block

System.out.println(“You can drink legally.”); // the then clause
} // end of if block
else
{ // start of else block

System.out.println(“You are too young to drink alcohol!”);
 } // end of else block
 // execute the next statement

System.out.println(“The rest of the programme is next.”);

When the code snippet is run (in a main method), the output when age = 20 is:

 You can drink legally.
The rest of the programme is next.

and when age = 17, the output is:

 You are too young to drink alcohol!
The rest of the programme is next.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Java: Classes in Java Applications

24

Flow Control

Another example taken from the themed application shows an if … else construct in action in another of
the methods of the Member class. The setCard method is used to associate a member of the Media Store
with a virtual membership card. Each member may have up to two cards, so the method checks whether
another card can be allocated to a member.

 /**
 * This method gives a card to a member by adding it to the member's array of (two) cards.

* The array has the identifier cards.
* @return result A boolean value to state whether the addition of a card is possible.

 * @param card A parameter of the MembershipCard type.
 */
 public boolean setCard(MembershipCard card) {

 // declare a local variable
 boolean result = true;
 // noOfCards is the number of cards allocated to the member
 if (noOfCards < cards.length) {
 cards[noOfCards] = card;
 noOfCards++;
 }
 else {
 System.out.println("No more cards allowed for this member.");
 result = false;
 }
 return result;

 } // End of setCard.

The if … else construct in the method is used to return either true or false, depending upon the result of
evaluating the if condition that determined whether or not the member has fewer than two cards.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

25

Flow Control

2.4.3 Compound if … else Constructs

There is another form of the else part of the if .. else construct: else … if. This form of compound or

cascading construct executes a code block depending on the evaluation of an if condition immediately
after the initial if condition. The compound if … else construct is illustrated diagrammatically in Figure
2.2 below.

Figure 2.2 The logic of the compound if … else construct

The figure shows that any number of else … if statements can follow the initial if statement.

The example on the next page illustrates how the if .. else construct is used to identify the classification
for degrees awarded by universities in the United Kingdom, based on the average mark achieved in the
final year.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

26

Flow Control

 // declare two local variables
int average = 0;

 String result = null;
 if(average >= 70)
 {
 result = "First Class";
 }
 else if(average >= 60)
 {
 result = "Upper Second";
 }
 else if(average >= 50)
 {
 result = "Lower Second";
 }
 else if(average >= 40)
 {
 result = "Pass";
 }
 else
 {
 result = "You are going to have to tell your mother about this!";
 }
 System.out.println("Your result is: " + result);

Enhance your career opportunities
We offer practical, industry-relevant undergraduate and postgraduate degrees in central London

› Accounting and finance › Global banking and finance
› Business, management and leadership › Luxury brand management
› Oil and gas trade management › Media communications and marketing

Contact us to arrange a visit
Apply direct for January or September entry

T +44 (0)20 7487 7505 E exrel@regents.ac.uk W regents.ac.uk

http://bookboon.com/
http://bookboon.com/count/advert/10a6ab04-ac0d-4b6b-a275-a2d2009406fa

Download free eBooks at bookboon.com

Java: Classes in Java Applications

27

Flow Control

Running the code with an average of 30 % produces the following output:

 Your result is: You are going to have to tell your mother about this!

and with an average of 65 %, the output is as follows:

 Your result is: Upper Second

When the value of average is equal to 65, this satisfies more than one of the else … if statements in the
code above. However, the output confirms that the first time that a condition is met – when average >= 60
– control passes out of the initial if statement without evaluating the remaining conditions. When a
condition is met in the code above, the output shows that control skips to the first statement after the initial
if statement, i.e. to the statement

System.out.println("Your result is: " + result);

It is worthwhile alerting learners to the use of braces in compound else … if constructs. Care must be taken
when coding compound else .. if constructs due to the number of pairs of brackets involved: a common
error is to omit one or more of these brackets. In cases where there is only one statement in an if block, it
is good practice to include braces – as shown in the example above – in anticipation of if blocks that
include more than one statement.

The final example in this sub-section shows a compound else … if construct in action in the Member class
of the themed application. The method scans the array of (virtual) cards held by a member and outputs
some information that is stored against each card. (for loops are discussed in a later section of this chapter.)

 /** This method scans the array of cards in a for loop. */
 public void getDetialsOfCards() {

 // Declare a local variable.
 MembershipCard card = null;
 // note the use of the instanceof operator
 for (int i = 0; i < noOfCards; i++)
 {
 if (cards[i] instanceof DvdMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a DVD card with " + getNoOnLoan()
 + " DVDs currently on loan.");
 } else if (cards[i] instanceof GameMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a games card with " +
 getNoOnLoan() + " CDs currently on loan");
 } else
 {

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

28

Flow Control

 System.out.println("Neither type of card.");
 }
 } // End of for loop.

} // End of getDetailsOfCards.

2.4.4 Nested if Statements

As an alternative to compound if statements, as described in sub-section 2.4.3, if statements can be nested
if the method demands this kind of logic. The simple example of nesting if statements shown next is a
variant of the first example in sub-section 2.4.3.

int average = 65;
 String result = null;
 String course = "Java";
 if (course == "Java")
 { // start of outer if
 if(average >= 70) // start of inner if
 {
 result = "First Class";
 }
 else if(average >= 60)
 {
 result = "Upper Second";
 }
 else if(average >= 50)
 {
 result = "Lower Second";
 }
 else if(average >= 40)
 {
 result = "Pass";
 }
 else
 {
 result = "You are going to have to tell your mother about this!";
 }
 System.out.println("Your result is: " + result);
 } // end of outer if
 System.out.println("No more results are available.");

When the code is run, the output is

 Your result is: Upper Second
No more results are available.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

29

Flow Control

When the next version is run, the output is

 No more results are available.

int average = 65;
 String result = null;
 String course = "C++";
 if (course == "Java")
 { // start of outer if
 if(average >= 70) // start of inner if
 {
 result = "First Class";
 }
 else if(average >= 60)
 {
 result = "Upper Second";
 }
 else if(average >= 50)
 {
 result = "Lower Second";
 }
 else if(average >= 40)
 {
 result = "Pass";
 }
 else
 {
 result = "You are going to have to tell your mother about this!";
 }
 System.out.println("Your result is: " + result);

} // end of outer if
 System.out.println("No more results are available.");

Care should be taken when using any of the variants of the if statement to ensure and test that the required
logic is implemented in the construct. It is often helpful to draw a diagram of the logic required, in order
to help decide which variant to use to meet specific requirements.

2.4.5 The Conditional Operator

Java provides a ternary, conditional operator ? : that is a compact version of an if … else statement. The
operator takes three operands: the first is a boolean condition; the second is the result if the condition is
true; the third is the result if the condition is false.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

30

Flow Control

Let us recall a previous example from this chapter.

if (age >= 18) // the if condition
{ // start of if block

System.out.println(“You can drink legally.”); // the then clause
} // end of if block
else
{ // start of else block

System.out.println(“You are too young to drink alcohol!”);
 } // end of else block
 // execute the next statement

System.out.println(“The rest of the programme is next.”);

The logic of the if .. else statement can be re-written as follows, using Java’s ternary operator.

int age = 21;
 System.out.println(age >= 18 ? "Old enough to drink" : "Too young to drink");
 System.out.println("The rest of the programme is next.");

and produces the following output when run:

 Old enough to drink
The rest of the programme is next.

The next and final sub-section in the category of decision-making constructs describes the
switch … case construct.

2.4.6 The switch … case Construct

The switch … case construct is an alternative to compound if statements if the condition is an evaluation
of an integer expression. As such, it is often easier to code than compound if statements in that is it less
prone to errors such as the omission of brackets. The switch … case construct is illustrated
diagrammatically in Figure 2.3 on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

31

Flow Control

Figure 2.3 The logic of the switch … case construct

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Java: Classes in Java Applications

32

Flow Control

The logic of the switch … case construct is such that the integer condition is tested against each case
in order from left to right. When this logic is translated in Java source code, the generalised syntax is
as follows.

int someIntegerValue;
 switch (someIntegerValue) { // start of switch block
 case 1: // do something; break;
 case 2: // do something else; break;
 case 3: // do something else ; break;
 case 3: // do something else; break;
 case 5: // do something else; break;
 } // end of switch block

// first statement after the switch block

The break statement after each case statement is necessary to exit the enclosing switch block when the
switch condition has been satisfied. When a break statement is executed, control passes out of the
enclosing switch block to the first statement after the end of the switch block. On the face of it, it would
seem logical to omit the final break statement. However, it is advisable to include it in case additional
case statements are added to an existing switch block.

In the days before the ubiquitous use of icon-driven applications, old-fashioned text-based user interfaces
for green screen types of applications were often menu-driven. Case statements were typically used to
construct this kind of interface. While it is generally true that menu-driven applications have largely
disappeared, case statements are useful for testing the conditional flow through application logic.

The following example illustrates testing a switch … case construct with a value entered via the
keyboard. (It isn’t necessary to show the code used to capture a number via the keyboard for the
purposes of the example.)

 // a number entered via the keyboard is stored in a variable with the identifier month

int days;
switch(month)
{
 case 9:
 case 4:
 case 6:
 case 11: days = 30; break;
 case 2: days = 28; break;
 default: days = 31; break;
}
System.out.println(“The number of days is: + days);

When this code is run in a main method, the output is as follows:

 Enter the number of the month: 1
The number of days is: 31

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

33

Flow Control

Enter the number of the month: 2
The number of days is: 28

Enter the number of the month: 3
The number of days is: 31

Enter the number of the month: 4
The number of days is: 30

Enter the number of the month: 5
The number of days is: 31

Enter the number of the month: 6
The number of days is: 30

Enter the number of the month: 7
The number of days is: 31

Enter the number of the month: 8
The number of days is: 31

Enter the number of the month: 9
The number of days is: 30

Enter the number of the month: 10
The number of days is: 31

Enter the number of the month: 11
The number of days is: 30

Enter the number of the month: 12
The number of days is: 31

The output shows that the default statement is used to detect all values that aren’t detected by any of
the case statements. The output also shows that when the value of month is 9, 4 or 6, the first three
case statements are said to ‘fall through’ so that the value of days is 30 when the value of month is 9,
4, 6 or 11.

2.5 Controlling the Repetition of Blocks of Code

Controlling the repetition of a block of code can be achieved in one of two ways: by using a counter to
repeat a block of code a known number of times; by using the evaluation of a boolean expression to decide
when to stop repeating the block. The general requirement to repeat a block of code is illustrated in Figure
2.4 on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

34

Flow Control

Figure 2.4 The requirement to repeat a block of code

2.5.1 Counter-Controlled Repetition

The logic of counter-controlled repetition is visualised in Figure 2.5.

Figure 2.5 Counter-controlled repetition of a block of code

Working with the counter is implemented by what is known as a for loop. The general syntax of a for loop

is as follows:

for (declare and initialise the counter;
 final value condition of the counter;
 update counter)
 {

// block to repeat
}

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

35

Flow Control

The general syntax implies that the value of the final condition of the counter is a known value. For
example, consider the following code snippet:

for (int i = 0; i <= someMaxValue; i ++)
 {

// code block to repeat
 }

If the value of someMaxValue is 10, the code block will execute 11 times. If the code snipped is modified
to read as follows with the same value of someMaxValue

for (int i = 0; i < someMaxValue; i ++)
 {

// code block to repeat
 }

the code block will execute 10 times. The purpose of including the two code snippets above is to show
that care must be taken when initialising and setting the final value of the counter’s condition when
controlling the number of times that a for loop is executed.

The example, shown on the next page, shows a for loop in action in one of the methods of the Member

class in the themed application,.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Java: Classes in Java Applications

36

Flow Control

 /**
* This method outputs the details of the cards held by the member by scanning across the
* member’s array of cards with the identifier cards.
*/

 public void getDetialsOfCards() {

 // Declare a local variable.
 MembershipCard card = null;

 // Note the use of the instanceof operator.
 for (int i = 0; i < noOfCards; i++) // the value of noOfCards is known
 {
 if (cards[i] instanceof DvdMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a DVD card with “ +
 card.getNoOnLoan() + “ DVDs currently on loan.");
 } else if (cards[i] instanceof GameMembershipCard)
 {
 card = cards[i];
 System.out.println("This is a games card with " +
 card.getNoOnLoan() + " CDs currently on

loan");
 } else System.out.println("Neither type of card.");
 } // End of for loop.

} // End of getDetailsOfCards.

The purpose of the for loop in the method is to scan the array of a member’s (virtual) cards in order to
output some information stored on each card. In the example, the number of cards held by a member is
known: therefore, a for loop is the clear choice of construct to use to repeat the required block of code.

2.5.2 Boolean-Controlled Repetition

Java provides two boolean-controlled constructs to control the repetition of a block of code: the while loop

and the do … while loop.

The while loop

The logic of the while loop is visualised in Figure 2.6 below.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

37

Flow Control

Figure 2.6 The logic of a while loop

Figure 2.6 implies that if the boolean condition returns an initial value of ‘false’, the loop will not execute
at all. If, on the other hand, the boolean condition returns an initial value of ‘true’, the loop will repeat its
execution until such time as the condition eventually returns ‘false’. The general syntax of a while loop
is as follows.

 // initialise the variable used in the boolean condition
 while(condition is true)
 {
 {

// statements to repeat
 }
 // update the condition: finally, exit the loop
 }

The first example from Section 2.5.1 can be modified to use a while loop as shown on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

38

Flow Control

int someMaxValue = 10;
 int counter = 0;
 while(counter < someMaxValue)
 {
 {

System.out.println("Hello world!");
 }
 counter ++ ;
 }

The String “Hello World!” is output ten times.

The do …while loop

The logic of the do … while loop is visualised in Figure 2.7 below.

Figure 2.7 The logic of a do … while loop

Figure 2.7 implies that if the boolean condition returns a value of ‘false’, the loop will execute once. If, on
the other hand, the boolean condition returns a value of ‘true’, the loop will repeat its execution until such
time as the condition eventually returns ‘false’. The general syntax of a do … while loop is shown on the
next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

39

Flow Control

 // initialise the variable used in the boolean condition
 do
 {
 {

// statements to repeat
 }

// update the condition: finally, exit the loop
 } while(condition is true);

The same example from Section 2.5.1 can be modified to use a do … while loop as shown next.

int someMaxValue = 10;
 int counter = 0;
 do
 {
 {
 System.out.println("Hello world!");
 }
 counter ++ ;

} while(counter < someMaxValue);

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2014

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

Download free eBooks at bookboon.com

Java: Classes in Java Applications

40

Flow Control

In this case, the String “Hello World!” is output ten times.

The next example is taken from one of the classes of the graphical user interface (GUI) used to run the
themed application; the example shows a while loop in action. The purpose of the loop is to scan the array
of members of the Media Store when a member logs in via the GUI. When the member is found in the
array, the loop is exited to avoid searching the remainder of the array.

// This method finds out if a member has registered with the Media Store and has been added
// to the array of members. The method responds to the ‘Login’ button when a member
// attempts to login via the GUI. The main purpose of the method is to find the member in the
// array of members.
// Read in the array of members. mediaStore is the reference to the MediaStore object created
// elsewhere in the application.

 mediaStore.readMembers();
 // Capture the member's user name and password from the GUI. Store these values in local
 // variables username and password.
 // Concatenate the user’s user name and password.

String searchString = userName + password;
// Search the array of members for the combined user name and password. First, get the array
// of members.
Member[] existingMembers = mediaStore.getMembers();
// Scan the array of existing members and compare the search string with each member's
// combined user name and password.
boolean flag = true;

 while(flag == true)
{

 for (int i = 0; i < mediaStore.getNoOfMembers(); i ++)
 {
 existingMember = existingMembers[i];
 String existingUserName = existingMember.getUserName();
 String existingPassword = existingMember.getPassword();

String combinedNameAndPassword =
existingUserName + existingPassword;

if (searchString.equals(combinedNameAndPassword))
{
 // Found existing member in the array of members.

 // Output a message to the GUI.
 flag = false;
 break; // out of the for loop

 } // end if
 } // end of for loop

 break; // out of the while loop

} // end of while loop

// if there is no match, output a suitable message

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

41

Flow Control

 if (flag == true)
 {

// output "No such member; please try again.");
 }

2.6 Deciding Which Construct to Use

Deciding which construct to use in any particular situation is a matter of judgement that will become
easier to make when the learner gains practical experience. For example, the method implementation
explained at the end of the previous sub-section is a direct consequence of the logic required to find a
member in the array of members and then break out of the loop to avoid unnecessary iterations of the main
loop. As can be seen from the code, the full implementation of the method is a combination of nested if,
while and for constructs.

Before completing our examination of the contents of Table 2.1, it is worthwhile mentioning another ‘loop
within a loop’ nested construct.

2.6.1 Nested for loops

One of my university colleagues sets a fiendish exercise to students enrolled on his Java course. The main
task of the exercise is to print a calendar. While on the face of it this may seem a straightforward exercise,

it actually involves a number of loops within loops, generally referred as nested for loops. A highly

generalised skeleton solution to this exercise might read as follows.

for (int months = 1; months < 13; months ++) // the month loop
 {
 for (int weeks = 1; weeks < 5; weeks ++) // the week loop
 {
 for (int days = 1; days < 32; days ++) // the day loop
 {
 // output the day and date in a calendar format
 }
 }
 } // end of outer for loop

The outline example above suggests that nested for loops can be used to construct tables or two-
dimensional arrays of data. The inner loop is used to output each entry in a row and the outer loop can be
used to move to the next column. The next code snippet outputs the value of each cell of a table or array.

for (int i = 1; i <= numberOfColumns; i++)
 {
 for (int j = 1; j <= cellValue; j++)
 {
 // output the known value of the cell at co-ordinates j , i, i.e. the jth row of the
 // ith column

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

42

Flow Control

 } // end of inner for loop
 } // end of outer for loop

The next section almost completes our examination of Table 2.1 by considering branching statements.

2.7 Branching Statements

Branching statements are used to terminate a loop or a decision construct or to skip an iteration of a loop.

2.7.1 The Unlabelled break Statement

A number of the examples discussed in this chapter include break statements to expedite the immediate
exit from a flow control construct. The break statement is used to terminate switch, for, while and do …

while constructs. For example, when the following method is invoked

public void someMethod() {

 for (int i = 0; i < 11; i++)
 {
 System.out.print(i + ", ");
 if (i == 5)
 break; // out of the enclosing for loop using an unlabelled break

 }
System.out.println("for loop terminated.");

} // End of someMethod

the output is:

0, 1, 2, 3, 4, 5, for loop terminated.

The output shows that the break statement causes the enclosing for loop to terminate and control passes to
the first statement after the for loop.

2.7.2 The Unlabelled continue Statement

We have not encountered the continue statement thus far in this guide. The continue statement is used to
skip an iteration of for, while and do … while loops.

For example, when the method shown on the next page is invoked, it produces the output displayed after
the body of the method.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

43

Flow Control

public void someMethod() {

for (int i = 0; i < 11; i++)
{

 if (i == 5)
 continue; // skip this iteration of the loop using an unlabelled continue

 // statement
 System.out.print(i + ", ");
 }
 System.out.println("The iteration when i is 5 is skipped.");

 } // End of someMethod.

The output is:

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, The iteration when i is 5 is skipped.

The output shows that the continue statement causes the enclosing for loop to skip the iteration when i is 5
and control passes to the next iteration of the enclosing loop.

The examples in sub-sections 2.7.1 and 2.7.2 illustrate the use of the unlabelled form of the break and
continue statements. When loops are nested, the labelled form of the break and continue statements
identify which of the outer loops are involved in a branch. The reader is referred to the relevant section of
Sun’s on-line Java tutorial for examples that explain the labelled form of the branching statements.

 http://java.sun.com/docs/books/tutorial/java/nutsandbolts/branch.html

2.8 Handling Exception Objects

The final row of Table 2.1 mentions a special kind of decision, namely the one that uses the try … catch

construct to detect error conditions in Java programmes. Chapter Four explains how errors are detected by
objects of the Exception class. For the purposes of this chapter, and to complete the consideration of Table
2.1, one way of looking at the try … catch block is to consider the generalised code snippet that is shown
on the next page.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

44

Flow Control

 // one or more of the methods invoked in the next code block are known to produce errors, i.e.
 // they are said to ‘throw’ errors that must be detected or ‘caught’ in a separate code block

try
{

// method invocations that throw errors are coded here
}
catch (Exception e)
{

// do something about the error
}

The structure of the try … catch construct implies that a decision is made depending upon whether an error
is detected or not. If an error is thrown by one of the method invocations in the try block, the remaining
statements of the try block are skipped and the statements in the catch block are executed. If, on the other
hand, method invocations in the try block do not throw any errors, the statements of the catch block are
skipped and control passes to the first statement after the end of the catch block. Chapter Four goes into
details about how try … catch blocks are used to write robust Java code.

In the next chapter, we will find out how we can extend classes by means of a very important concept
known as inheritance.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

